Q.P. Code: 18EE0223

Reg. No: SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

(AUTONOMOUS)

B.Tech III Year II Semester Regular Examinations July-2021

MODERN CONTROL THEORY

(Electrical and Electronics Engineering)

Time: 3 hours

PART-A

(Answer all the Questions $5 \times 2 = 10$ Marks)

1	a	Write any two properties of state transition matrix.	L1	2M
	b	What is controllability?	L1	2 M
	c	Define state observer.	L1	2M
	d	Write the Classification of Nonlinearities.	L2	2M
	e	State Lyapunov instability theorem.	L5	2M

PART-B

(Answer all Five Units $5 \ge 10 = 50$ Marks)

UNIT-I

2	a	Derive a solution of homogeneous state equation.	L3	5M
	b	Obtain the state transition matrix of	L1	5M
		$A = \begin{bmatrix} -6 & 1 & 0 \\ -11 & 0 & 1 \end{bmatrix}$		
		l = 6 0 0		
		OR		
3	a	Explain state space representation of the system.	L1	5M
	b	Obtain state transition matrix for the following system:		5M
		$\begin{bmatrix} x \\ 1 \\ x \\ 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x \\ x \\ 2 \end{bmatrix}$		

UNIT-II

The state model of a system is given by 4

$\begin{bmatrix} x^{1} \\ x^{2} \\ x^{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x^{1} \\ x^{2} \\ x^{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} u \quad Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x^{1} \\ x^{2} \\ x^{3} \end{bmatrix}$

Convert the state model to canonical form.

L2 **10M**

Max. Marks: 60

Q.P. Code: 18EE0223

	``	1		
			Υ.	
•	•			

R18

	OR		
5	a Define Observability. What are the tests to find the Observability of a given system?	L1	5M
	b The state equation is given by	L4	5M
	$ \begin{bmatrix} \dot{X^{1}} \\ \dot{X^{2}} \\ \dot{X^{3}} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix} u $		
	Test for controllability.		
	UNIT-III		
6	Explain the design of pole placement controller using state feedback.	L1	10M
	OR		
7	The state model is given by	L2	10M
	$\begin{bmatrix} \dot{X}^{1} \\ \dot{X}^{2} \\ \dot{X}^{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x^{1} \\ x^{2} \\ x^{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} u Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x^{1} \\ x^{2} \\ x^{3} \end{bmatrix}$		
	Convert the state model to controllable phase variable form.		
	UNIT-IV		
8	Derive the describing function of backlash nonlinearities.	L6	10M
	OR OR		
9	Derive the describing function of saturation nonlinearities.	L6	10M
	UNIT-V		
10	a State and prove Lyapunov stability theorem.	L5	5M
	b Show the graphical representation of stability, asymptotic stability and instability.	L1	5M
	OR		
11	Consider the non-linear system: $x_1 = x_2, x_2 = -x_1 - x_1^2 x_2$ investigate the stability of this	L1	10M
	non-linear system around its equilibrium point at origin.		

END